Advance in toxic and pathogenic mechanisms of bacterial hemolysins
MA Bi-shu1, MA Li-na2, LIN Xu-ai3, YAN Jie3
1. Department of Microbiology and Immunology, Haiyuan College of Kunming Medical University, Kunming 650106, China; 2. College of Medical Technology, Gansu Chinese Medical University, Lanzhou 743000, China; 3. Department of Microbiology and Parasitology, School of Medicine, Zhejiang University,Hangzhou 310058, China
Abstract:Many bacterial pathogens can produce hemolysins to lyse erythrocytes, but recent studies revealed that bacterial hemolysins could cause injury and death of many nucleated cells and platelets. According to the difference of molecular structure, cell-binding manner and membrane pore-forming mechanism, most of bacterial hemolysins are classified into the toxins belonging to either repeats in toxin family (RTX) or cholesterol-dependent cytolysin family (CDC). Bacterial hemolysins play important pathogenic roles during infection of bacteria through membrane damage, cell lysis or disruption, ion disequilibrium-associated pathological changes, cell apoptosis or cell necroptosis as well as through TLR2/4-mediated NF-κB, p38MAPK, JNK signaling pathways and NLRs-mediated NLRP3 inflammasomes to cause powerful inflammatory reaction and inflammatory tissue injury.
马碧书, 马丽娜, 林旭瑷, 严杰. 细菌溶血素毒性和致病机制研究进展[J]. 中国人兽共患病学报, 2018, 34(2): 175-181.
MA Bi-shu, MA Li-na, LIN Xu-ai, YAN Jie. Advance in toxic and pathogenic mechanisms of bacterial hemolysins. Chinese Journal of Zoonoses, 2018, 34(2): 175-181.
[1] Yan J. Medical microbiology [M]. Third Edition, Beijing: The High Education Press, 2016, 43-49. (in Chinese) 严杰. 医学微生物学 [M]. 3版,北京:高等教育出版社,2016, 44-46. [2] Linhartová I, Bumba L, Masín J, et al. RTX proteins: a highly diverse family secreted by a common mechanism[J]. Fems Microbiol Rev, 2010, 34(6): 1076-1112. doi:10.1111/j.1574-6976.2010.00231.x [3] Benz R. Channel formation by RTX-toxins of pathogenic bacteria: Basis of their biological activity[J]. Biochim Biophys Acta, 2016, 1858(3): 526-537. doi:10.1016/j.bbamem.2015.10.025 [4] Satchell KJ. Structure and function of MARTX toxins and other large repetitive RTX proteins[J]. Annu Rev Microbiol, 2011, 65(1): 71-90. doi:10.1146/annurev-micro-090110-102943 [5] Wiles TJ, Mulvey MA. The RTX pore-forming toxin α-hemolysin of uropathogenic Escherichia coli : progress and perspectives[J]. Future Microbiol, 2013, 8(1): 73-84. doi:10.2217/fmb.12.131 [6] Thomas S, Holland IB, Schmitt L. The type 1 secretion pathway — the hemolysin system and beyond[J]. Biochim Biophys Acta, 2014, 1843(8): 1629-1641. doi:10.1016/j.bbamcr.2013.09.017 [7] Kim YR, Lee SE, Kook H, et al. Vibrio vulnificus RTX toxin kills host cells only after contact of the bacteria with host cells[J]. Cell Microbiol, 2008, 10(4): 848-862. doi:10.1111/j.1462-5822.2007.01088.x [8] Cyril FR, James CW, Michelle AD. Giant MACPF/CDC pore forming toxins: A class of their own[J]. Biochim Biophys Acta, 2016, 1858(3): 475-486. doi:org/10.1016/j.bbamem.2015.11.017 [9] Hotze EM, Le HM, Sieber JR, et al. Identification and characterization of the first cholesterol-dependent cytolysins from Gram-negative bacteria[J]. Infect Immun, 2013, 81(1): 216-225. doi:10.1128/IAI.00927-12 [10] Gonzalez MR, Bischofberger M, Pernot L, et al. Bacterial pore forming toxins: the (w)hole story?[J]. Cell Mol Life Sci, 2008, 6(3): 493-507. doi:10.1007/s00018-007-7434-y [11] Cassidy SK, O’Riordan MX. More than a pore: the cellular response to cholesterol dependent cytolysins[J]. Toxins, 2013, 5(4): 618-636. doi:10.3390/toxins5040618 [12] Wilke GA, Bubeck-Wardenburg J. Role of a disintegrin and metalloprotease 10 in Staphylococcus aureus alpha-hemolysin-mediated cellular injury[J]. Proc Natl Acad Sci USA, 2010, 107(30): 13473-13478. doi:10.1073/pnas.1001815107 [13] Inoshima I, Inoshima N, Wilke GA, et a1. A Staphylococcus aureus pore-forming toxin subverts the activity of ADAM10 to cause lethal infection in mice[J]. Nat Med, 2011, 17(10):1310-1314. doi:10.1038/nm.2451 [14] Berube B, Wardenburg J. Staphylococcus aureus -toxin: nearly a century of intrigue[J]. Toxins, 2013, 5(6): 1140-1166. doi:10.1038/nm.2451 [15] Loffler B, Hussain M, Grundmeier M, et al. Staphylococcus aureus panton-valentine leukocidin is a very potent cytotoxic factor for human neutrophils[J]. PLoS Pathog, 2010, 6(1): e1000715-1000726. doi:10.1371/journal.ppat.1000715 [16] Alfa H, Bao GV, Christopher SS, et al. Staphylococcus aureus β-toxin mutants are defective in biofilm ligase and sphingomyelinase activity, and causation of infective endocarditis / sepsis[J]. Biochemistry, 2016, 55(17): 2510-2517. doi:10.1021/acs.biochem.6b00083 [17] Julien V, Nicolas G, Christian L, et al. δ-hemolysin, an update on a membrane-interacting peptide [J]. Peptides, 2009, 30(4): 817-823. doi:10.1016/j.peptides.2008.12.017 [18] Cheung GY, Duong AC, Otto M. Direct and synergistic hemolysis caused by Staphylococcus phenol-soluble modulins: implications for diagnosis and pathogenesis[J]. Microbes Infect, 2012, 14(4): 380-386. doi:10.1016/j.micinf.2011.11.013 [19] Wang H, Peng S, Chen DF. Research progress on the virulence factors of Streptococcus hemolysin S[J]. Chin J Zoonoses, 2017, 33(3): 287-292. doi:10.3969/j.issn.1002-2694.018.2017.03 (in Chinese) 王虹, 彭爽, 陈德芳. 链球菌毒力因子溶血素S的研究进展[J]. 中国人兽共患病学报, 2017,33(3): 287-292. [20] Luo XN, Cao XY, Cai XP. Research progress on mononuclear cell hyperplasia listeria hemolysin[J]. Chin J Zoonoses, 2009,25 (09): 895-898. doi:10.5297/ser.1201.002 (in Chinese) 骆学农, 曹晓瑜, 才学鹏. 单核细胞增生李斯特菌溶血素的研究进展[J]. 中国人兽共患病学报, 2009,25 (09): 895-898. [21] Inoshima I, Inoshima N, Wilke GA, et al A Staphylococcus aureus pore-forming toxin subverts the activity of ADAM10 to cause lethal infection in mice[J]. Nat Med, 2011, 17(10): 1310-1314. doi:10.1038/nm.2451 [22] Los FC, Randis TM, Aroian RV, et al. Role of pore-forming toxins in bacterial infectious diseases[J]. Microbiol Mol Biol Rev, 2013, 77(2): 173-207. doi:10.1128/MMBR.00052-12 [23] Eiffler I, Behnke J, Ziesemer S, et al. Staphylococcus aureus -toxin-mediated cation entry depolarizes membrane potential and activates p38 MAP kinase in airway epithelial cells[J]. Am J Physiol Lung Cell Mol Physiol, 2016, 311(3): L676-685. doi:10.1152/ajplung.00090.2016 [24] Bleriot C, Lecuit M. The interplay between regulated necrosis and bacterial infection[J]. Cell Mol Life Sci, 2016, 73(11/12): 2369-2378. doi:10.1007/s00018-016-2206-1 [25] Wei YB, Fan TJ, Yu MM. Inhibitor of apoptosis proteins and apoptosis[J]. Acta Biochim Biophys Sin, 2008, 40(4): 278-288. doi:10.1111/j.1745-7270.2008.00407.x [26] Zhang X, Vallabhaneni R, Loughran P A, et al. Changes in FADD levels, distribution, and phosphorylation in TNF-alpha induced apoptosis in hepatocytes is caspase-3, caspase-8 and BID dependent[J]. J Apoptosis, 2008, 13(8): 983-992. doi:10.1016/j.neuroimage.2006.07.002 [27] Zhao JF, Sun AH, Ruan P, et al. Vibrio vulnificus cytolysin induces apoptosis in HUVEC, SGC-7901 and SMMC-7721 cells via caspase-9/3-dependent pathway[J]. Microbial Pathogenesis, 2009, 46(4): 194-200. doi:10.1016/j.micpath.2008.12.005 [28] Yu HN, Lee YR, Park KH, et al. Membrane cholesterol is required for activity of Vibrio vulnificus cytolysin[J]. Arch Microbiol, 2007, 187(6): 467-473. doi:10.1007%2Fs00203-007-0214-0 [29] Bielaszewska M, Rüter C, Kunsmann L, et al. Enterohemorrhagic Escherichia coli hemolysin employs outer membrane vesicles to target mitochondria and cause endothelial and epithelial apoptosis[J]. PLoS Pathog, 2013, 9(12): e1003797-1003826. doi:10.1371/journal.ppat.1003797 [30] Mao C, Obeid LM. Ceramidasas: regulators of cellular responses mediated by ceramide, sphingosine and sphingosine-1-phosphate[J]. Biochim Biophys Acta, 2008, 1781(9): 424-434. doi:10.1016/j.bbalip.2008.06.002 [31] Hu WL, Ge YM, Ojcius DM, et al. p53-signaling controls cell cycle arrest and caspase-independent apoptosis in macrophages infected with pathogenic Leptospira species[J]. Cell Microbiol, 2013, 15(10): 1624-1659. doi:10.1111/cmi.12141 [32] Craven RR, Gao X, Allen IC, et al. Staphylococcus aureus alpha-hemolysin activates the NLRP3-inflammasome in human and mouse monocytic cells[J]. PLoS One, 2009, 4(10): e7446-7456. doi:10.1371/journal.pone.0007446 [33] Kebaier C, Chamberland RR, Allen IC, et al. Staphylococcus aureus α-hemolysin mediates virulence in a murine model of severe pneumonia through activation of the NLRP3 inflammasome[J]. J Infect Dis, 2012, 205(5): 807-817. doi:10.1093/infdis/jir846 [34] Liu TT,Liu CS,Guan JC,et al. Apoptosis mechanism of human umbilical vein endothelial cells induced by Staphylococcus aureus a-hemolysin[J]. Chin J Zoonoses, 2010, 26(06): 569-571.doi:10.3969/j.issn.1002-2694.2010.06.015 (in Chinese) 刘婷婷, 刘从森, 管俊昌,等. 金黄色葡萄球菌α溶血素诱导脐静脉内皮细胞凋亡机制的研究[J].中国人兽共患病学报, 2010, 26(06): 569-571. [35] Vince JE, Silke J. The intersection of cell death and inflammasome activation[J]. Cell Mol Life Sci, 2016, 73(11-12): 2349-2367. doi:10.1007/s00018-016-2205-2 [36] Gonzalez-Juarbe N, Gilley RP, Hinojosa CA, et al. Pore-forming toxins induce macrophage necroptosis during acute bacterial pneumonia[J]. PLoS Pathog, 2015, 11(12): e1005337-1005359. doi:10.1371/journal.ppat.1005337 [37] Takeuchi O, Akira S. Pattern recognition receptors and inflammation[J]. Cell, 2010, 140(6): 805-820. doi:10.1016/j.cell.2010.01.022 [38] Dessing MC, Hirst RA, de Vos AF, et al. Role of Toll-like receptors 2 and 4 in pulmonary inflammation and injury induced by pneumolysin in mice[J]. PLoS One, 2009, 4(11): e7993-7998. doi:10.1371/journal.pone.0007993 [39] Hunt S, Green J, Artymiuk PJ. Hemolysin E (HlyE, ClyA, SheA) and related toxins[J]. Adv Exp Med Boil, 2010, 677(1): 116-126. doi:10.1007/978-1-4419-6327-7 [40] Wang H, Wu YF, Ojcius, DM, et al. Leptospiral hemolysins induce proinflammatory cytokines through Toll-like receptor 2-and 4-mediated JNK and NF-κB signaling pathways[J]. PLoS One, 2012, 7(8): e42266-42280. doi:10.1371/journal.pone.0042266 [41] Figueiredo RT, Fernandez PL, Mourao-Sa DS, et al. Characterization of heme as activator of Toll-like receptor 4[J]. J Biol Chem, 2007, 282(28): 20221-20229. doi:10.1074/jbc.M610737200 [42] Parimon TL, Li Z, Bolz DD, et al. Staphylococcus aureus α-hemolysin promotes platelet-neutrophil aggregate formation[J]. J Infect Dis, 2013, 208(5): 761-770. doi:10.1093/infdis/jit235 [43] Schroder K, Tschopp J. The inflammasomes[J]. Cell, 2010, 140(6): 821-832. doi:10.1016/j.cell.2010.01.040 [44] Latz E, Xiao TS, Stutz A. Activation and regulation of the inflammasomes[J]. Nat Rev Immunol, 2013, 13(6): 397-411. doi:10.1038/nri3452 [45] Lu B, Nakamura T, Inouye K, et al. Novel role of PKR in inflammasome activation and HMGB1 release[J]. Nature, 2012, 488(7413): 670-674. doi:10.1038/nature11290 [46] Dutra FF, Alves LS, Rodrigues D, et al. Hemolysis-induced lethality involves inflammasome activation by heme[J]. Proc Natl Acad Sci U S A, 2014, 111(39): 4110-4118. doi:10.1073/pnas.1405023111 [47] Holzinger D, Gieldon L, Mysore V. et al. Staphylococcus aureus Panton-Valentine leukocidin induces an inflammatory response in human phagocytes via the NLRP3 inflammasome[J]. J Leukoc Biol, 2012, 92(5): 1069-1081. doi:10.1189/jlb.0112014 [48] Zhang X, Cheng Y, Xiong Y, et al. Enterohemorrhagic Escherichia coli specific enterohemolysin induced IL-1β in human macrophages and EHEC-induced IL-1β required activation of NLRP3 inflammasome[J]. PLoS One, 2012, 7(11): e50288-50296. doi:10.1371/journal.pone.0050288 [49] Meixenberger K, Pache F, Eitel J, et al. Listeria monocytogenes -infected human peripheral blood mononuclear cells produce IL-1beta, depending on listeriolysin O and NLRP3[J]. J Immunol, 2010, 184(2): 922-930. doi:10.4049/jimmunol.0901346 [50] Qiao Y, Wang P, Qi J, et al. TLR-induced NF-κB activation regulates NLRP3 expression in murine macrophages[J]. FEBS Lett, 2012, 586(7): 1022-1026. doi:10.1016/j.febslet.2012.02.045 [51] Spaan AN, Vrieling M, Wallet P, et al. The staphylococcal toxins-haemolysin AB and CB differentially target phagocytes by employing specific chemokine receptors[J]. Nat Commun, 2014, 5(11): 5438-5468. doi:10.1038/ncomms6438 [52] Kloft N, Busch T, Neukirch C, et al. Pore-forming toxins activate MAPK p38 by causing loss of cellular Potassium[J]. Biochembiophys Res Commun, 2009, 385(4): 503-506. doi:10.1016/j.bbrc.2009.05.121 [53] Brodsky IE, Monack D, NLR-mediated control of inflammasome assembly in the host response against bacterial pathogens[J]. Semin Immunol, 2009, 21(4): 199-207. doi:10.1016/j.smim.2009.05.007 [54] Nunes P, Demaurex N. The role of calcium signaling in phagocytosis[J]. J Leukoc Biol, 2010, 88(1): 57-68. doi:10.1189/jlb.0110028 [55] Karavolos MH, Bulmer DM, Spencer H, et al. Salmonella typhi sense host neuroendocrine stress hormones and release the toxin hemolysin E[J]. EMBO Rep, 2011, 12: 252-258. doi:10.1038/embor.2011.4 [56] Kayagaki N, Warming S, Lamkanfi M, et al. Non-canonical inflammasome activation targets caspase-11[J]. Nature, 2011, 479(7371): 117-121. doi:10.1038/nature10558 [57] Vigano E, Diamond CE, Spreafico R, et al. Human caspase-4 and caspase-5 regulate the one-step non-canonical inflammasome activation in monocytes[J]. Nat Commun, 2015, 6(10): 8761-8773. doi:10.1038/ncomms9761 [58] Liu X, Zhang ZB, Lieberman J, et al. Inflammasome-activated gasdermin D causes pyroptosis by forming membrane pores[J]. Nature, 2016, 535(7610): 153-158. doi:10.1038/nature18629