IL-33 deficiency promotes M1 polarization of mouse peritoneal macrophages infected with Toxoplasma gondii
HE Xiao-li1, WU Lin-qing2, XU Wei-qun1, YAN Cai-ling3, LIN Jun-jin3, ZHANG Lu-rong4, ZHANG Tao2
1. Experimental Teaching Center of Basic Medical Sciences, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350122, China; 2. Department of Immunology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350122, China; 3. Scientific Research Center of Basic Medical Sciences, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350122, China; 4. Fujian Platform for Medical Research at the First Affiliated Hospital, Fujian Key Laboratory of Individualized Active Immunotherapy and Key Laboratory of Radiation Biology, Fujian province, Fuzhou350005, China
Abstract:We investigated the effect of IL-33 knockout on the polarization of peritoneal macrophages from mouse with acute Toxoplasma infection, in order to uncover the function of IL-33 knockout in mice macrophages with acute Toxoplasma infection. pMφ was isolated from C57BL/6 wild type and IL-33 deficient mice and divided into Toxoplasma infected group and control group respectively. Infection rate of pMφ was determined; the mRNA of iNOS, Arg-1, IL-1, IL-10 and IL-12 were analyzed by real-time PCR; the secretion of IL-12, TNF-α, IL-10 and NO were detected by ELISA and Griess method respectively; the surface molecules (CD80, CD86, CD206, TLR4, TLR2, MHCⅡ) were analyzed by flow cytometry. Results showed that the infection rate of pMφ was deceased in IL-33-/- mice compared with wild-type mice (t=-2.49,P<0.05); the expression of M1 makers NO(t=29.71,P<0.05), MHCⅡ(t=19.05,P<0.05), CD86 and TLR4(t=8.34,P<0.05) were increased (P<0.01) while the M2 maker (CD206) was down-regulated in IL-33-/- mice infected with Toxoplasma than that in the wild-type infected group; the secretion of NO, IL-10, TNF-α and the expression of MHCⅡand CD86 were higher in infected group of both IL-33-/- and wild-type mice compared with uninfected control group respectively (P<0.01). Results suggest that IL-33 knockout promote the secretion of NO and the expression of MHCⅡ(F=14.88,P<0.05), CD86 and TLR4 via driving polarization of M1 macrophages, thereby enhancing the immune protection in acute Toxoplasma infection.
[1] Tenter AM, Heckeroth AR, Weiss LM.Toxoplasma gondii: from animals to humans[J]. Int J Parasitol, 2000,30(12/13):1217-1258.DOI:10.1016/S0020-7519(00)00124-7 [2] Munoz M, Liesenfeld O, Heimesaat MM.Immunology of Toxoplasma gondii[J]. Immunol Rev, 2011, 240(240): 269-285. DOI: 10.1111/j.1600-065X.2010.00992.x [3] Schmitz J, Owyang A, Oldham E, et al.IL-33, an interleukin-1-1ike cytokine that signals via the IL-1 receptor-related protein ST2 and induces T helper type 2-associated cytokines[J]. Immunity, 2005, 23(5): 479-490. DOI: 10.1016/j.immuni.2005.09.015 [4] Oboki K, Ohno T, Kajiwara N, et al.IL-33 is a crucial amplifier of innate rather than acquired immunity[J]. PNAS, 2010, 107(43): 18581-18586. DOI: 10.1073/pnas.1003059107 [5] Wang C, Dong C, Xiong S.IL-33 enhances macrophage M2 polarization and protects mice from CVB3-induced viral myocarditis[J]. J Mol Cell Cardiol,2016, 103(12): 22-30. DOI: 10.1016/j.yjmcc. 2016.12.010 [6] Tu Lei, Chen Jie, Xu Dandan, et al.IL-33-induced alternatively activated macrophage attenuates the development of TNBS-inducecolitis[J]. Oncotarget,2017, 8(17): 27704-27714. DOI: 10.18632/oncotarget. 15984 [7] 李康,郭强,王翠妮, 等. M1和M2巨噬细胞表型的比较分析[J]. 现代免疫学, 2008, 28(3): 177-183. [8] 耿华,袁小林.巨噬细胞的研究进展[J].国际免疫学杂志,2013,36(6):450-454.DOI: 10.3760/cma.j.issn.1673-4394.2013.06.009 [9] 周宪宾,姚成芳.巨噬细胞M1 /M2 极化分型的研究进展[J].中国免疫学杂志, 2012, 28(10): 957-960. [10] 黄自坤,李俊明. 巨噬细胞极化及其在感染性疾病中的作用[J]. 国际免疫学杂志, 2012, 35(4): 255-281.DOI: 10.3760/cma.j.issn.1673-4394.2012.04.003 [11] Hazlett LD, Mcclellan SA, Barret RP, et al.IL-33 shifts macrophage polarization, promoting resistance against Pseudomonas aeruginosa keratitis[J]. Invest Ophthalmol Vis Sci, 2010, 51(3): 1524-1532. DOI: 10.1167/ivos.09-3983 [12] 吴媛媛,李龙,沈萍萍.巨噬细胞替代激活及调控[J]. 中国细胞生物学报, 2011, 33(2): 197-203. [13] Kurowska-Stolarska M, Stolarski B, Kewin P, et al.IL-33 amplifies the polarization of alternatively activated macrophages that contribute to airway inflammation[J]. J Immunol, 2009, 183(10): 6469-6477. DOI: 10.404/jimmunol.0901575 [14] Prokop S, Heppener FL, Goebel HH, et al.M2 polarized macrophages and giant cells contribute to myofibrosis in neuromuscular sarcoidosis[J]. Am J Pathol, 2011, 178(3): 1279-1286. DOI: 10.1016/j.ajpath.2010.11.065 [15] Yang Z, Grinchuk V, Urban JF, et al.Macrophages as IL-25/IL-33-responsive cells play an important role in the induction of type2 immunity[J]. PLoS One, 2013, 8(3): e59441-e59452. DOI: 10.1371/journal.pone.0059441 [16] Besnard AG, Guabiraba R, Niedbala W, et al.IL-33-mediated protection against experimental cerebral malaria is Linked to induction of type 2 Innate lymphoid cells, M2 macrophages and regulatory T cells[J]. PLoS Pathog, 2015, 11(2): e1004607-e1004628. DOI: 10.1371/journal.ppat.1004607 [17] Oboki K, Ohno T, Kajiwara N, et al.IL-33 and IL-33 receptors in host defense and diseases[J]. Allergol Int, 2010, 59(2): 143-160. DOI: 10.2332/allergolint.10-RAI-0186 [18] Zhang X, Goncalves R, Mosser DM, et al. The Isolation and characterization of murine macrophages[J]. Curr Protoc Immunol, 2008, Chapter: Unit-14.1. DOI: 10.1002/0471142735.im1401s83 [19] He JJ, Ma J, Li FC, et al.Transcriptional changes of mouse splenocyte organelle components following acute infection with Toxoplasma gondii[J]. Exp Parasitol, 2016, 167(8): 7-16. DOI: 10.1016/j.exppara. 2016.04.019 [20] Lang C, Gross U, Lüder CG, et al.Subversion of innate and adaptive immune responses by Toxoplasma Gondii[J]. Parasitol Res, 2007, 100(2): 191-203. DOI: 10.1007/s00436-006-0306-9 [21] Leroux LP, Dasanayake D, Rommereim LM, et al.Secreted Toxoplasma gondii molecules interfere with expression of MHC-II in interferon gamma-activated macrophages[J]. Int J Parasitol, 2015, 45(5): 319-332. DOI: 10.1016 /j.ijpara.2015.01.003 [22] Lüder CG, Lang T, Beuerle B, et al.Down-regulation of MHC class II molecules and inability to up-regulate class I molecules in murine macrophages after infection with Toxoplasma gondii[J]. Clin Exp Immunol, 1998, 112(2): 308-316. DOI: 10.1046/j.1365-2249.1998.00594.x [23] Tajie H, Wilson EH, Tait ED, et al.NF-κB1 contributes to T cell-mediated control of Toxoplasma gondii in the CNS[J]. J Neuroimmunol, 2010, 222(1/2): 19-28. DOI: 10.1016/j.jneuroim.2009.12.009 [24] Debierregrockiego F, Campos MA, Azzouz N, et al.Activation of TLR2 and TLR4 by glycosylphosphatidylinositols derived from Toxoplasma gondii[J]. J Immunol, 2007, 179(2): 1129-1137. DOI: 10.4049/jimmunol.179.2.1129 [25] Yarovinsky F.Toll-like receptors and their role in host resistance to Toxoplasma gondii[J]. Immunol Lett, 2008, 119(1-2): 17-21. DOI: 10.1016/j.imlet.2008.05.007 [26] Egan CE, Sukhumavasi W, Butcher BA, et al.Functional aspects of Toll-like receptor/MyD88 signalling during protozoan infection: focus on Toxoplasma gondii[J]. Clin Exp Immunol, 2009, 156(1): 17-24. DOI: 10.1111/j.1365-2249.2009.03876.x [27] Mun HS, Aosai F, Norose K, et al.TLR2 as an essential molecule for protecting against Toxoplasma gondii infection[J]. Int Immunol, 2003, 15(9): 1081-1087. DOI: 10.1093/intimm/dxg108