Abstract:ATP-binding cassette (ABC) transporters are integral membrane proteins that actively transport molecules across cell membranes. The ABC is a wide variety of physiological processes in all eukaryotic, archaebacterial and eubacterial species. Recent crystal structures of a number of ATPase domains, substrate binding proteins, and full-length transporters have given new insight in the molecular basis of transport. Bioinformatics approaches allow an approximate identification of all ABC transporters in E. coli and their relation to other known transporters. Computational approaches involving modeling and simulation are beginning to yield insight into the dynamics of the transporters. We summarize the function of the known ABC transporters in E. coli and mechanistic insights from structural and computational studies.
冯振月, 刘德福, 崔玉东. 大肠杆菌ABC转运体研究进展[J]. 中国人兽共患病学报, 2018, 34(10): 944-949.
FENG Zhen-yue, LIU De-fu, CUI Yu-dong. Progress on research of ATP-binding cassette transporters in Escherichia coli. Chinese Journal of Zoonoses, 2018, 34(10): 944-949.
[1] Rea PA, Li ZS, Lu YP, et al.From vacuolar GS-X Pumps to multispecitic ABC transporters[J]. Annu Rev Plant Physiol Plant Mol Biol, 1998, 49: 727-760. [2] Higgins CF, Linton KJ.The ATP switch model for ABC transporters[J]. Nat Struct Mol Biol, 2004, 11(10): 918-926. DOI: 10.1038/nsmb836 [3] Moussatova A,Kandt C,O’Mara ML, et al. ATP-binding cassette transporters in Escherichia coli[J]. Biochimica et Biophysica Acta, 2008, 1778: 1757-1771. DOI: 10.1016/j.bbamem.2008.06.009 [4] Misra RV,Horler RS,Reindl W, et al.EchoBASE: an integrated post-genomic database for Escherichia coli[J]. Nucleic Acids Res, 2005, 33: D329-333 [5] Lorenz C, Dougherty TJ, Lory S.Transcriptional responses of Escherichia coli to a small-molecule inhibitor of LolCDE, an essential component of the lipoprotein transport pathway[J]. J Bacteriol, 2016, 198(23): 3162-3175. DOI: 10.1128/JB.00502-16 [6] Singh H, Velamakanni S, Deery MJ, et al.ATP-dependent substrate transport by the ABC transporter MsbA is proton-coupled[J]. Nat Commun, 2016, 7: 12387. DOI: 10.1038/ncomms12387 [7] Benedet M, Falchi FA, Puccio S, et al.The lack of the essential LptC protein in the trans-envelope lipopolysaccharide transport machine is circumvented by suppressor mutations in LptF, an inner membrane component of the Escherichia coli transporter[J]. PLoS One, 2016, 11(8): e0161354. DOI: 10.1371/journal.pone.0161354 [8] Reimann S, Poschmann G, Kanonenberg K, et al.Interdomain regulation of the ATPase activity of the ABC transporter haemolysin B from Escherichia coli[J]. Biochem J, 2016, 473(16): 2471-2483. DOI: 10.1042/BCJ20160154 [9] Fath MJ, Skvirsky RC, Kolter R.Functional complementation between bacterial MDR-like export systems: colicin V, alpha-hemolysin, and Erwinia protease[J]. J Bacteriol, 1991, 173(23): 7549-7556. [10] Christensen O, Harvat EM, Thöny-Meyer L, et al.Loss of ATP hydrolysis activity by CcmAB results in loss of c-type cytochrome synthesis and incomplete processing of CcmE[J]. FEBS J, 2007, 274(9): 2322-2332. DOI: 10.1111/j.1742-4658.2007.05769.x [11] Socías SB, Vincent PA, Salomón RA.The leucine-responsive regulatory protein, Lrp, modulates microcin J25 intrinsic resistance in Escherichia coli by regulating expression of the YojI microcin exporter[J]. J Bacteriol, 2009, 191(4): 1343-1348. DOI: 10.1128/JB.01074-08 [12] Lu S, Zgurskaya HI.Role of ATP binding and hydrolysis in assembly of MacAB-TolC macrolide transporter[J]. Mol Microbiol, 2012, 86(5): 1132-1143. DOI: 10.1111/mmi.12046 [13] Croteau DL, DellaVecchia MJ, Perera L, et al.Cooperative damage recognition by UvrA and UvrB: identification of UvrA residues that mediate DNA binding[J]. DNA Repair (Amst), 2008, 7(3): 392-404. DOI: 10.1016/j.dnarep.2007.11.013 [14] Dippel R, Boos W.The maltodextrin system of Escherichia coli: metabolism and transport[J]. J Bacteriol, 2005, 187(24): 8322-8331. DOI: 10.1128/JB.187.24.8322-8331.2005 [15] Mowbray SL, Cole LB.1.7 A X-ray structure of the periplasmic ribose receptor from Escherichia coli[J]. J Mol Biol, 1992, 225(1): 155-175. [16] Cario E.P-glycoprotein multidrug transporter in inflammatory bowel diseases: More questions than answers[J]. World J Gastroenterol, 2017, 23(9): 1513-1520. DOI: 10.3748/wjg.v23.i9.1513 [17] Oswald C, Holland IB, Schmitt L.The motor domains of ABC-transporters. What can structures tell us[J]. Naunyn-Schmiedeberg’s Arch Pharmacol, 2006, 372(6): 385-399. DOI: 10.1007/s00210-005-0031-4 [18] Hung LW,Wang IX,Nikaido K, et al.Crystal structure of the ATP-binding subunit of an ABC transporter[J]. Nature, 1998, 396(6712): 703-707. [19] Smith PC,Karpowich N,Millen L, et al.ATP binding to the motor domain from an ABC transporter drives formation of a nucleotide sandwich dimer[J]. Mol Cell, 2002, 10(1): 139-149. [20] Chen J,Lu G,Lin J, et al.A tweezers-like motion of the ATP-binding cassette dimer in an ABC transport cycle[J]. Mol Cell, 2003, 12(3): 651-661. [21] Procko E,Ferrin-O, Connell I, et al.Distinct structural and functional properties of the ATPase sites in an asymmetric ABC transporter[J]. Mol Cell, 2006, 24(1): 51-62. DOI: 10.1016/j.molcel.2006.07.034 [22] Zaitseva J,Jenewein S,Jumpertz T, et al.H662 is the linchpin of ATP hydrolysis in the nucleotide-binding domain of the ABC transporter HlyB[J]. EMBO J, 2005, 24(11): 1901-1910. DOI: 10.1038/sj.emboj.7600657 [23] Locher KP,Lee AT,Rees DC.The E. coli BtuCD structure: a framework for ABC transporter architecture and mechanism[J]. Science, 2002, 296(5570): 1091-1098. [24] Dawson RJ,Locher KP.Structure of a bacterial multidrug ABC transporter[J]. Nature, 2006, 443(7108): 180-185. DOI: 10.1038/nature05155 [25] Dawson RJ,Locher KP.Structure of the multidrug ABC transporter Sav1866 from Staphylococcus aureus in complex with AMP-PNP[J]. FEBS Lett, 2007, 581(5): 935-938. DOI: 10.1016/j.febslet.2007.01.073 [26] Hollenstein K,Frei DC,Locher KP.Structure of an ABC transporter in complex with its binding protein[J]. Nature, 2007, 446(7132): 213-216. DOI: 10.1038/nature05626 [27] Pinkett HW,Lee AT,Lum P, et al.An inward-facing conformation of a putative metal-chelate-type ABC transporter[J]. Science, 2007, 315(5810): 373-377. DOI: 10.1126/science.1133488 [28] Walker JE,Saraste M,Runswick MJ, et al.Distantly related sequences in the alpha-and beta-subunits of ATP synthase, myosin, kinases and other ATPrequiring enzymes and a common nucleotide binding fold[J]. EMBO J, 1982, 1(8): 945-951. [29] Kim IW,Peng XH,Sauna ZE, et al.The conserved tyrosine residues 401 and 1044 in ATP sites of human P-glycoprotein are critical for ATP binding and hydrolysis: evidence for a conserved subdomain, the A-loop in the ATP-binding cassette[J]. Biochemistry, 2006, 45(24): 7605-7616. DOI: 10.1021/bi060308o [30] Carrier I,Urbatsch IL,Senior AE, et al.Mutational analysis of conservedaromatic residues in the A-loop of the ABC transporter ABCB1A (mouse Mdr3)[J]. FEBS Lett, 2007, 581(2): 301-308. DOI: 10.1016/j.febslet.2006.12.030 [31] Gerber S,Comellas-Bigler M,Goetz BA, et al.Structural basis of transinhibitionin a molybdate/tungstate ABC transporter[J]. Science, 2008, 321(5886): 246-250. DOI: 10.1126/science.1156213 [32] Zhang WK, Wang D, Duan Y, et al.Mechanosensitive gating of CFTR[J]. Nat Cell Biol, 2010, 12(5): 507-512. DOI: 10.1038/ncb2053 [33] Davidson AL,Dassa E,Orelle C, et al.Structure, function, and evolution of bacterial ATP-binding cassette systems[J]. Microbiol Mol Biol Rev, 2008, 72(2): 317-364. DOI: 10.1128/MMBR.00031-07 [34] Davidson AL, Chen J.ATP-binding cassette transporters in bacteria[J]. Annu Rev Biochem, 2004, 73: 241-268. DOI: 10.1146/annurev.biochem.73.011303.073626 [35] Velamakanni S,Yao Y,Gutmann DA, et al.Multidrug transport by the ABC transporter Sav1866 from Staphylococcus aureus[J]. Biochemistry, 2008, 47(35): 9300-9308. DOI: 10.1021/bi8006737 [36] Berntsson RP, Smits SH, Schmitt L, et al.A structural classification of substrate-binding proteins[J]. Poolman BFEBS Lett, 2010, 584(12): 2606-2617. DOI: 10.1016/j.febslet.2010.04.043 [37] Slotboom DJ.Structural and mechanistic insights into prokaryotic energy-coupling factor transporters[J]. Nat Rev Microbiol, 2014, 12(2): 79-87. DOI: 10.1038/nrmicro3175