National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention; Chinese Center for Tropical Diseases Research; WHO Collaborating Center of Tropical Diseases; National Center for International Research on Tropical Diseases, Ministry of Science and Technology; Key Laboratory of Parasite and Vector Biology, Ministry of Health, Shanghai 200025, China
Abstract:Aptamers are synthetic single-stranded DNA or RNA oligonucleotides obtained by in vitro screening with systematic evolution of ligands by exponential enrichment. Aptamers are capable of binding viruses, bacteria, parasites and other small molecular targets with high affinity and specificity. Compared with antibodies, aptamers have advantages of no immunogenicity, uncomplicated preparation, straight forward batch production, smooth modification, stable performance and economical price, which possesses crucial application prospects in the field of disease diagnosis and treatment. Aptamers targeting Plasmodium, Trypanosome and Leishmania were chiefly reviewed in this artice provide new thoughts for the detection and control of parasitic diseases.
杨帆, 李石柱, 秦志强. 靶向寄生虫的核酸适配体应用研究进展[J]. 中国人兽共患病学报, 2020, 36(8): 665-671.
YANG Fan, LI Shi-zhu, QIN Zhi-qiang. Research progress on aptamers targeting parasites. Chinese Journal of Zoonoses, 2020, 36(8): 665-671.
[1] Tao DY, McGill B, Hamerly T, et al. A saliva-based rapid test to quantify the infectious subclinical malaria parasite reservoir[J]. Sci Transl Med, 2019, 11(473): eaan4479. DOI: 10.1126/scitranslmed.aan4479 [2] Park KS.Nucleic acid aptamer-based methods for diagnosis of infections[J]. Biosens Bioelectron, 2018, 102: 179-188. DOI: 10.1016/j.bios.2017.11.028 [3] Davydova A, Vorobjeva M, Pyshnyi D, et al.Aptamers against pathogenic microorganisms[J]. Crit Rev Microbiol, 2016, 42(6): 847-865. DOI: 10.3109/1040841x.2015.1070115 [4] Song KM, Lee S, Ban C.Aptamers and their biological applications[J]. Sensors, 2012, 12(1): 612-631. DOI: 10.3390/s120100612 [5] Ellington AD, Szostak JW.In vitro selection of RNA molecules that bind specific ligands[J]. Nature, 1990, 346(6287): 818-822. DOI: 10.1038/346818a0 [6] Tuerk C, Gold L.Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase[J]. Science, 1990, 249(4968): 505-510. DOI: 10.1126/science.2200121 [7] Gotrik MR, Feagin TA, Csordas AT, et al.Advancements in aptamer discovery technologies[J]. Acc Chem Res, 2016, 49(9): 1903-1910. DOI: 10.1021/acs.accounts.6b00283 [8] Afrasiabi S, Pourhajibagher M, Raoofian R, et al.Therapeutic applications of nucleic acid aptamers in microbial infections[J]. J Biomed Sci, 2020, 27(1): 6. DOI: 10.1186/s12929-019-0611-0 [9] Zhou JH, Rossi J.Erratum: Aptamers as targeted therapeutics: current potential and challenges[J]. Nat Rev Drug Discov, 2017, 16(6): 440. DOI: 10.1038/nrd.2017.86 [10] Keefe AD, Pai S, Ellington A.Aptamers as therapeutics[J]. Nat Rev Drug Discov, 2010, 9(7): 537-550. DOI: 10.1038/nrd3141 [11] Röthlisberger P, Hollenstein M.Aptamer chemistry[J]. Adv Drug Deliv Rev, 2018, 134: 3-21. DOI: 10.1016/j.addr.2018.04.007 [12] Flamme M, McKenzie LK, Sarac I, et al. Chemical methods for the modification of RNA[J]. Methods, 2019, 161: 64-82. DOI: 10.1016/j.ymeth.2019.03.018 [13] Kaur H, Bruno JG, Kumar A, et al.Aptamers in the therapeutics and diagnostics pipelines[J]. Theranostics, 2018, 8(15): 4016-4032. DOI: 10.7150/thno.25958 [14] Bridget E Barber, Giri S Rajahram, Matthew J Grigg, et al.World Malaria Report: Time to acknowledge Plasmodium knowlesi malaria[J]. Malar J, 2017, 16(1): 135. DOI: 10.1186/s12936-017-1787-y [15] Barfod A, Persson T, Lindh J.In vitro selection of RNA aptamers against a conserved region of the Plasmodium falciparum erythrocyte membrane protein 1[J]. Parasitol Res, 2009, 105(6): 1557-1566. DOI: 10.1007/s00436-009-1583-x [16] Li Y, Geyer CR, Sen D.Recognition of anionic porphyrins by DNA aptamers[J]. Biochemistry, 1996, 35(21): 6911-6922. DOI: 10.1021/bi960038h [17] Okazawa A, Maeda H, Fukusaki E, et al.In vitro selection of hematoporphyrin binding DNA aptamers[J]. Bioorg Med Chem Lett, 2000, 10(23): 2653-2656. DOI: 10.1016/s0960-894x(00)00540-0 [18] Niles JC, Derisi JL, Marletta MA.Inhibiting Plasmodium falciparum growth and heme detoxification pathway using heme-binding DNA aptamers[J]. Proc Natl Acad Sci USA, 2009, 106(32): 13266-13271. DOI: 10.1073/pnas.0906370106 [19] Lee S, Song KM, Jeon W, et al.A highly sensitive aptasensor towards Plasmodium lactate dehydrogenase for the diagnosis of malaria[J]. Biosens Bioelectron, 2012, 35(1): 291-296. DOI: 10.1016/j.bios.2012.03.003 [20] Jeon W, Lee S, Manjunatha DH, et al.A colorimetric aptasensor for the diagnosis of malaria based on cationic polymers and gold nanoparticles[J]. Anal Biochem, 2013, 439(1): 11-16. DOI: 10.1016/j.ab.2013.03.032 [21] Cheung YW, Kwok J, Law AW, et al.Structural basis for discriminatory recognition of Plasmodium lactate dehydrogenase by a DNA aptamer[J]. Proc Natl Acad Sci USA, 2013, 110(40): 15967-15972. DOI: 10.1073/pnas.1309538110 [22] Cheung YW, Dirkzwager RM, Wong WC, et al.Aptamer-mediated Plasmodium-specific diagnosis of malaria[J]. Biochimie, 2018, 145: 131-136. DOI: 10.1016/j.biochi.2017.10.017 [23] Hurdayal R, Achilonu I, Choveaux D, et al.Anti-peptide antibodies differentiate between plasmodial lactate dehydrogenases[J]. Peptides, 2010, 31(4): 525-532. DOI: 10.1016/j.peptides.2010.01.002 [24] Frith KA, Fogel R, Goldring JPD, et al.Towards development of aptamers that specifically bind to lactate dehydrogenase of Plasmodium falciparum through epitopic targeting[J]. Malar J, 2018, 17(1): 191. DOI: 10.1186/s12936-018-2336-z [25] Singh NK, Arya SK, Estrela P, et al.Capacitive malaria aptasensor using Plasmodium falciparum glutamate dehydrogenase as target antigen in undiluted human serum[J]. Biosens Bioelectron, 2018, 117: 246-252. DOI: 10.1016/j.bios.2018.06.022 [26] Singh NK, Thungon PD, Estrela P, et al.Development of an aptamer-based field effect transistor biosensor for quantitative detection of Plasmodium falciparum glutamate dehydrogenase in serum samples[J]. Biosens Bioelectron, 2019, 123: 30-35. DOI: 10.1016/j.bios.2018.09.085 [27] Joseph DF, Nakamoto JA, Garcia Ruiz OA, et al.DNA aptamers for the recognition of HMGB1 from Plasmodium falciparum[J]. PLoS One, 2019, 14(4): e0211756. DOI: 10.1371/journal.pone.0211756 [28] Büscher P, Cecchi G, Jamonneau V, et al.Human African trypanosomiasis[J]. The Lancet, 2017, 390(10110): 2397-2409. DOI: 10.1016/s0140-6736(09)60829-1 [29] Ospina-Villa JD, Zamorano-Carrillo A, Castañón-Sánchez CA, et al.Aptamers as a promising approach for the control of parasitic diseases[J]. Braz J Infect Dis, 2016, 20(6): 610-618. DOI: 10.1016/j.bjid.2016.08.011 [30] Homann M, Goringer HU.Combinatorial selection of high affinity RNA ligands to live African trypanosomes[J]. Nucleic Acids Res, 1999, 27(9): 2006-2014. DOI: 10.1093/nar/27.9.2006 [31] Homann M, Göringer HU.Uptake and intracellular transport of RNA aptamers in African trypanosomes suggest therapeutic “piggy-back” approach[J]. Bioorg Med Chem, 2001, 9(10): 2571-2580. DOI: 10.1016/s0968-0896(01)00032-3 [32] Adler A, Forster N, Homann M, et al.Post-SELEX chemical optimization of a trypanosome-specific RNA aptamer[J]. Comb Chem High Throughput Screen, 2008, 11(1): 16-23. DOI: 10.2174/138620708783398331 [33] Homann M, Lorger M, Engstler M, et al.Serum-stable RNA aptamers to an invariant surface domain of live African trypanosomes[J]. Comb Chem High Throughput Screen, 2006, 9(7): 491-499. DOI: 10.2174/138620706777935324 [34] Lorger M, Engstler M, Homann M, et al.Targeting the variable surface of African trypanosomes with variant surface glycoprotein-specific, serum-stable RNA aptamers[J]. Eukaryotic Cell, 2003, 2(1): 84-94. DOI: 10.1128/ec.2.1.84-94.2003 [35] Zelada-Guillén GA, Tweed-Kent A, Niemann M, et al.Ultrasensitive and real-time detection of proteins in blood using a potentiometric carbon-nanotube aptasensor[J]. Biosens Bioelectron, 2013, 41: 366-371. DOI: 10.1016/j.bios.2012.08.055 [36] Pérez-Molina JA, Molina I.Chagas disease[J]. The Lancet, 2018, 391(10115): 82-94. DOI: 10.1016/s0140-6736(01)05577-5 [37] Ulrich H, Magdesian MH, Alves MJ, et al.In vitro selection of RNA aptamers that bind to cell adhesion receptors of Trypanosoma cruzi and inhibit cell invasion[J]. J Biol Chem, 2002, 277(23): 20756-20762. DOI: 10.1074/jbc.M111859200 [38] Nagarkatti R, Bist V, Sun S, et al.Development of an aptamer-based concentration method for the detection of Trypanosoma cruzi in blood[J]. PLoS One, 2012, 7(8): e43533. DOI: 10.1371/journal.pone.0043533 [39] Nagarkatti R, de Araujo FF, Gupta C, et al. Aptamer based, non-PCR, non-serological detection of Chagas disease biomarkers in Trypanosoma cruzi infected mice[J]. PLoS Negl Trop Dis, 2014, 8(1): e2650. DOI: 10.1371/journal.pntd.0002650 [40] 赵桂华, 王洪法, 仲维霞, 等. 新疆喀什地区黑热病暴发的危险因素分析[J]. 中国人兽共患病学报, 2015, 31(6): 592-596. DOI: 10.3969/j.issn.1002-2694.2015.06.021 [41] Burza S, Croft SL, Boelaert M.Leishmaniasis[J]. The Lancet, 2018, 392(10151): 951-970. DOI: 10.1016/s0140-6736(18)33044-7 [42] Julia TR, Solange MG, Herbert SS, et al.Serodiagnosis of Visceral and cutaneous leishmaniasis in human and canine populations living in indigenous reserves in the Brazilian Amazon Region[J]. Rev Soc Bras Med Trop Actions,2017, 50(1): 61-66. DOI: 10.1590/0037-8682-0377-2016 [43] Soto M, Requena JM, Quijada L, et al.Mapping of the linear antigenic determinants from the Leishmania infantum histone H2A recognized by sera from dogs with leishmaniasis[J]. Immunol Lett, 1995, 48(3): 209-214. DOI: 10.1016/0165-2478(95)02473-5 [44] Ramos E, Piñeiro D, Soto M, et al.A DNA aptamer population specifically detects Leishmania infantum H2A antigen[J]. Lab Invest, 2007, 87(5): 409-416. DOI: 10.1038/labinvest.3700535 [45] Martín ME, García-Hernández M, García-Recio EM, et al.DNA aptamers selectively target Leishmania infantum H2A protein[J]. PLoS One, 2013, 8(10): e78886. DOI: 10.1371/journal.pone.0078886 [46] Ramos E, Moreno M, Martín ME, et al.In vitro selection of Leishmania infantum H3-binding ssDNA aptamers[J]. Oligonucleotides, 2010, 20(4): 207-213. DOI: 10.1089/oli.2010.0240 [47] Stebeck CE, Beecroft RP, Singh BN, et al.Kinetoplastid membrane protein-11 (KMP-11) is differentially expressed during the life cycle of African trypanosomes and is found in a wide variety of kinetoplastid parasites[J]. Mol Biochem Parasitol, 1995, 71(1): 1-13. DOI: 10.1016/0166-6851(95)00022-s [48] Berberich C, Machado G, Morales G, et al.The expression of the Leishmania infantum KMP-11 protein is developmentally regulated and stage specific[J]. Biochim Biophys Acta, 1998, 1442(2/3): 230-237. DOI: 10.1016/s0167-4781(98)00176-6 [49] Berberich C, Requena JM, Alonso C.Cloning of genes and expression and antigenicity analysis of the Leishmania infantum KMP-11 protein[J]. Exp Parasitol, 1997, 85(1): 105-108. DOI: 10.1006/expr.1996.4120 [50] Marco AS, Khoa DT, Jessica V, et al.Kharon is an essential cytoskeletal protein involved in the trafficking of flagellar membrane proteins and cell division in African Trypanosomes[J]. J Biol Chem, 2016, 291(38): 19760-19773. DOI:10.1074/jbc.M116.739235 [51] Moreno M, Rincón E, Piñeiro D, et al.Selection of aptamers against KMP-11 using colloidal gold during the SELEX process[J]. Biochem Biophys Res Commun, 2003, 308(2): 214-218. DOI: 10.1016/s0006- 291x(03)01352-4 [52] Moreno M, González VM, Rincón E, et al.Aptasensor based on the selective electrodeposition of protein-linked gold nanoparticles on screen-printed electrodes[J]. Analyst, 2011, 136(9): 1810-1815. DOI: 10.1039/c1an15070g [53] Bag J, Bhattacharjee RB.Multiple levels of post-transcriptional control of expression of the poly (A)-binding protein[J]. RNA Biol, 2010, 7(1): 5-12. DOI: 10.4161/rna.7.1.10256 [54] Chekanova JA, Belostotsky DA.Evidence that poly(A) binding protein has an evolutionarily conserved function in facilitating mRNA biogenesis and export[J]. RNA, 2003, 9(12): 1476-1490. DOI: 10.1261/rna.5128903 [55] Guerra-Pérez N, Ramos E, García-Hernández M, et al.Molecular and functional characterization of ssDNA aptamers that specifically bind Leishmania infantum PABP[J]. PLoS One, 2015, 10(10): e0140048. DOI: 10.1371/journal.pone.0140048 [56] Bhattacharyya SN, Chatterjee S, Adhya S.Mitochondrial RNA import in Leishmania tropica: aptamers homologous to multiple tRNA domains that interact cooperatively or antagonistically at the inner membrane[J]. Mol Cell Biol, 2002, 22(12): 4372-4382. DOI: 10.1128/mcb.22.12.4372-4382.2002 [57] Long YQ, Qin ZQ, Duan ML, et al.Screening and identification of DNA aptamers toward Schistosoma japonicum eggs via SELEX[J]. Sci Rep, 2016, 6: 24986. DOI: 10.1038/srep24986 [58] Ospina-Villa JD, Dufour A, Weber C, et al.Targeting the polyadenylation factor EhCFIm25 with RNA aptamers controls survival in Entamoeba histolytica[J]. Sci Rep, 2018, 8(1): 5720. DOI: 10.1038/s41598-018-23997-w [59] Komarova N, Kuznetsov A.Inside the black box: what makes SELEX better[J]. Molecules, 2019, 24(19): E3598. DOI: 10.3390/molecules24193598 [60] Yan JH, Xiong HJ, Cai SD, et al.Advances in aptamer screening technologies[J]. Talanta, 2019, 200: 124-144. DOI:10.1016/j.talanta.2019.03.015 [61] Zhong Y, Zhao JY, Chen FL.Advances of aptamers screened by Cell-SELEX in selection procedure, cancer diagnostics and therapeutics[J]. Anal Biochem, 2020,598:113620. DOI: 10.1016/j.ab.2020.113620